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ABSTRACT (CONTINUED FROM SF 298) 
The results of some preliminary measurements, made at X-band, of the radar cross 

section (RCS) and images of model trees that scale to 235 to 355 MHz in the VHF-UHF bands 
are presented. We designed the model trees to match the growth patterns of forest trees and 
matched the dielectric properties of the model tree and ground plane materials to live softwood 
tree wood and moist soil. The dimensional and angle accuracy of the model trees, fabricated 
from CAD files we generated, were very high, k/50 and 1 deg, respectively. A newly developed 
method-of-moments RCS prediction code will be used to compute the full-size version of the 
model tree's RCS and compare it to the model measurements. We measured the models in free 
space and on ground planes to reveal the fundamental scattering phenomena of in situ trees. 

Preliminary results show that the roots have negligible impact on the overall RCS of a 
tree because of the transmission loss into and out of the soil and the attenuation of the wave 
propagating in the soil. Also, the dominant scattering mechanism is the dihedral multipath effect 
that increases the in situ RCS of the tree trunk to nearly its broadside value. The contributions 
from the branches interfere with one another and that of the trunk to produce an RCS scattering 
pattern that varies as the aspect angle varies. Prominent variations in the RCS of the trunk occur 
with changes in frequency. Their impact on the RCS diminishes as the number of branches 
increases. 

In the next phase of the program, scaled measurements will be made down to 100 MHz at 
grazing angles from 20 - 60 degrees, new trees and larger ground planes will be fabricated to 
model different dielectric constants and tree species, and the measurement system will be made 
fully polarimetric. 

VHF/UHF scale-model measurements are a powerful new research tool to collect, 
quickly and cost effectively, data to evaluate competing operational scenarios and to assess the 
efficacy of various signal and image processing techniques that reduce false alarms and 
discriminate target signals from tree clutter. The application of this technique will help to show 
whether certain approaches or radar operating parameters would or would not improve 
performance. This would help to focus full-scale measurements to specific areas that need further 
investigation thereby saving the resources required to field potentially unnecessary full-scale 
foliage penetration SAR experiments or system development. 
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Executive Summary 
We present a statistical analysis of the recently proposed non-homogeneity detector 

(NHD) for Gaussian interference statistics in this report. We show that a formal goodness- 
of-fit test can be constructed by accounting for the statistics of the generalized inner 
product (GIP) used as the NHD test statistic. Specifically, the Normalized-GIP is shown 
to follow a central-F distribution and admits a canonical representation in terms of two 
statistically independent Chi-squared distributed random variables. Moments of the GIP 
can be readily calculated as a result. These facts are used to derive the goodness-of-fit 
tests, which facilitate intelligent training data selection. Additionally, we address the 
issue of space-time adaptive processing (STAP) algorithm performance using the NHD 
as a pre-processing step for training data selection. Performance results for the adaptive 
matched filter (AMF) method are reported using simulated as well as measured data. 
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Chapter 1 

Introduction 

An important issue in space-time adaptive processing (STAP) for radar target detection is 
the formation and inversion of the covariance matrix underlying the clutter/interference. 
In practice, the unknown interference covariance matrix is estimated from a set of in- 
dependent identically distributed (iid) target-free training data which is assumed to be 
representative of the interference statistics in a cell under test. Frequently, the training 
data is subject to contamination by discrete scatterers or interfering targets. In either 
event, the training data becomes nonhomogeneous. As a result, it is non representative of 
the interference in the test cell. Estimates of the covariance matrix from nonhomogeneous 
training data result in severely undernulled clutter. Consequently, CFAR and detection 
performance suffer. Significant performance improvement can be achieved by employing 
pre-processing to select representative training data. 

The problem of target detection using improved training strategies has been considered 
in [1-8]. The impact of nonhomogeneity on STAP performance is considered in [8-11]. It 
was shown in [12] that the distribution information of a class of multivariate probability 
density functions (PDF) is succinctly determined through an equivalent univariate PDF 
of a quadratic form. An application of this result is the non-homogeneity detector (NHD) 
based on the generalized inner product (GIP) [1-4,8,13]. 

Non-homogeneity of the training data arises due to a number of factors such as con- 
taminating targets, presence of strong discretes, and non-stationary reflectivity properties 
of the scattering surface. In these scenarios, the test cell disturbance covariance matrix, 
RT, differs significantly from the estimated covariance matrix, R, formed using target-free 
disturbance realizations from adjacent reference cells. If a large number of test cell data 
realizations are available, the underlying non-homogeneity is characterized via the eigen- 
values of R_1Rr [13]. However, in radar applications, only a single realization of test cell 
data is usually available. Consequently, the resulting estimate, Rr, is singular. Hence, 
the works of [1-4,8,13] have addressed the use of a non-homogeneity detector (NHD) 
which compares an empirically formed GIP with a theoretically calculated mean based 
on the known covariance matrix. Large deviations of the GIP mean from the theoretical 
mean have been ascribed to non-homogeneity of the training data. Such an approach pro- 
vides meaningful results in the limit of large training data size. In practice, the amount 



of training data available for a given application is limited by system considerations such 
as bandwidth and fast scanning arrays. Furthermore, the inherent temporal and spatial 
non-stationarity of the interference precludes the collection of large amounts of training 
data. Consequently, the approach of [1-4,8,13] can be misleading since it ignores finite 
data effects and the resulting variability in the covariance matrix estimate. 

In this report we derive significant results pertaining to the statistics of the GIP for 
Gaussian interference. In particular, our results reveal that the empirical GIP mean using 
an estimated covariance matrix with finite data can be twice as large as the corresponding 
GIP mean for a known covariance matrix. Consequently, such a scenario can easily lead 
to incorrect classification of training data. The main result of this report is that the 
normalized GIP, P', admits a remarkably simple stochastic representation as the ratio 
of two statistically independent Chi-Squared distributed random variables. As a result, 
the GIP follows a central-F distribution. The stochastic representation facilitates rapid 
calculation of the GIP moments . These facts are exploited to construct a formal goodness- 
of-fit test for selecting homogeneous training data. 

We also present performance analyses of the NHD using the goodness-of-fit test for 
the GIP. Performance results are presented using both simulated and measured data. 
We then employ the NHD as a pre-processing step for training data selection and assess 
performance of the adaptive matched filter (AMF) test [14-16]. Performance is reported 
in terms of the probability of detection versus output signal to noise ratio for simulated 
data. For measured data, a plot of the test statistic versus range is used as a performance 
metric. 



Chapter 2 

GIP Statistics: Known Covariance 

Let x = [xi x2 ...xM]T denote a complex random vector with zero mean and known 
positive definite Hermitian covariance matrix R. The quadratic form given by Q = 
x^R^x has the important property that E{Q) = M [17]. This result is readily proven 

below. 
Q = x^R^x = tr[xHR-lx] = tr[R'^xH] (2.1) 

where tr(.) denotes the trace of a matrix. We have made use of the fact that ir(AB) = 
ir(BA). Hence, 

E(Q) = E{tr[R-lxxH}} = tr{R-lE{xxH}\ (2 2) 

= ir(R-:R) = tr(IM) = M y ' 

where IM is the M x M identity matrix. This result is important in that it is independent 
of the PDF underlying x and is only a function of the dimension of the random vector. 

If the PDF of x is known, the corresponding PDF of Q can be readily derived. For 
Gaussian distributed x, i.e., x ~ CW(0,R), the PDF of Q is a Chi-Squared distribution 
with M complex degrees of freedom. More precisely, 

Q^x^R^x^HR^xH2 (2.3) 

where ||.|| denotes the Euclidean vector norm. Letting y = R~2X gives 

M 

Q = \\y\\2 = E\^\2 (2-4) 
i=l 

where Yu i = 1,2,.. .M are iid CN(0,1) random variables. Since Q is the sum of the 
squared magnitudes of M iid CN{0,1) random variables, it follows that Q is a Chi- 
Squared distributed random variable with M complex degrees of freedom [17]. The PDF 
of Q is given by 

,A*-1 

fQ(q) = l^exp(-q)     0 < q < co (2.5) 

where T(.) is the Eulero-Gamma function. The PDF of Q is derived in Appendix A. 



The GIP based NHD calculates the quadratic form Q using an estimated covariance 
matrix (formed from iid target free training data) and compares its mean with the di- 
mensionality of the random vector x. Deviations from M have been attributed to non- 
homogeneities in the training data [1-4,8]. In practice, the interference covariance matrix 
is formed from a finite amount of training data. The statistical variability associated with 
the data could introduce additional errors and thus deviations of the GIP from M cannot 
entirely be ascribed to the presence of non-homogeneities. Consequently, it is useful to 
work with the statistics of Q formed with an estimated covariance matrix. 



Chapter 3 

GIP Statistics: Unknown Covariance 

The complex-Gaussian test data vector is denoted by x ~ CiV(0,Rr), where RT is 
unknown. Let zu i = 1,2,.. .K denote iid CiV(0,Rz) target free training data. For 
representative (homogeneous) training data, RT = Rz = R. The maximum likelihood 
estimate of the covariance matrix is given by 

n i=l 

P 
Let P = xHR_1x. A stochastic representation for the normalized GIP denoted by P = — 

is derived in Appendix B. Consequently, P can be expressed as 

P = *™± (3.2) 
#2 

where i?i and R2 are statistically independent Chi-squared distributed random variables 

with PDFs given by 

-A/-1 

/Äi(*-i) = ^ycxp(-r1)    0<n<oo (3.3) 

-K-M 

Mr*) = T{K
rlM + i)exp{-r2)   °^r2<0° (3-4) 

respectively. The PDF of P', which is simply a central-F distribution [18], is expressed as 

1 TM~l 

fp'^~ ß{L,M){l + r)M+L (3-5) 
0 < r < oo 

where L = K - M + 1 and 

ß{m,n) = fem-\l-6)n-ld6. (3.6) 

5 



The statistical equivalence of P to within a scalar of the ratio of two independent chi- 
square distributed random variables is fascinating in that it permits rapid calculation 
of the moments of P. More importantly, it is extremely useful in Monte-Carlo studies 
involving computer generation of P. For homogeneous training data, the use of (3.2) 
circumvents the need to explicitly generate the test data vector x and the training data 
vectors used for covariance estimation. For large M and perforce K, significant compu- 
tational savings can be realized from the method of (3.2). 

It can be readily shown that 

E(P) = KE(Rl)E(R;l) = - M 

M K (3-7) 

K [1- 
(M + l) 

K     J 

where E(P) and a2
P denote the mean and variance of P, respectively. We then consider 

the PDF of — in the limit of large K. The characteristic function of —^ is given by 

$R2(ju) = E[exp(-ju-£)] = J- . (3.8) 
A (l A. ±Z-\K-M+\ 

In the limit of K -» oo, we have 

*(jw) = limits® R2(ju) = exp(-ju). (3.9) 

R2 
The PDF of — in the limit of K -> oo is given by 

1    r°° 
fRi(r) = ^j_   exPi(r ~ l)iw]dw = 6{r - 1). (3.10) 

Hence, for K -» oo, R2/K becomes unity with probability 1. Consequently, the GIP 
is simply fiL and hence, follows a Chi-Squared distribution with M complex degrees of 
freedom. Thus for K -> oo, E(P) = M and o% = M, corresponding to the known 
covariance matrix results. Consequently, the GIP statistical representation given by (3.2) 
provides additional insights into the NHD. The numerator random variable corresponds 
to the GIP statistics for known covariance matrix. The denominator random variable 
succinctly embeds the deleterious effects of estimating the covariance matrix with finite 
sample support as well as nonhomogeneity of the training data. A manifestation of 
this effect can be seen from the deviation of the statistics of R2 from the Chi-Squared 
distribution. 



Chapter 4 

New Test for Nonhomogeneity 

The work of [1-4,8] uses an NHD based on comparing the mean of empirically formed GIPs 
(from different realizations of test data) to M. Large deviations from M are ascribed to 
nonhomogeneities. However, the effects of finite data support and the associated statistical 
variability can result in large deviations of the empirical GIP mean from M. Thus, a more 
stringent test for the GIP based NHD consists of the following steps: 

1. Form the GIP denoted by P for a given K. 

2. Perform a goodness-of-fit test of the empirically formed £ with the theoretically 
predicted PDF of (3.5). Specifically, we set the type-I error, a, to be 0.1. This is 
simply the probability of incorrectly rejecting the hypothesis that the data comes 
from the F-distribution of (3.5). More precisely, this corresponds to calculating a 
threshold A, such that a = Pr(P' > A) = 0.1. From (3.5), it follows that 

Pr(P' > A) = betainci-^—,   M,   L) (4.1) 
A + 1 

where 1 x 

betainc(x, M, L) = jr^jT^ ^(l ~ B^dB. (4.2) 

Given a, M, and L, A is readily calculated from an inversion of (4.1). The goodness- 
of-fit test consists of comparing the empirically formed P' from each training data 
realization with A and rejecting those realizations for which P' exceeds A. 

3. A second method for the goodness-of-fit test is a comparison of the empirical GIP 
mean to the theoretically predicted mean value of (3.7) and retaining those GIP 
realiztions, which exhibit the least deviation. Large discrepancies between the the- 
oretical and empirical means result from nonhomogeneities. 

The performance of the goodness-of-fit test methods is presented in the next section. 



Chapter 5 

Performance Analysis of the 
Non-Homogeneity Detector 

We present performance results of our approach here. Figure 5.1 shows the PDF of P' 
for several values of K with M=8 for Gaussian interference statistics. Observe that the 
variance of P' decreases with increasing K. This is anticipated since R tends to R with 
probability 1 as K -»■ oo. The results presented in Figures 5.2 and 5.3 correspond to the 
case of homogeneous training data. Figure 5.2 presents a comparison of the cumulative 
distribution function (CDF) of P' obtained from Monte-Carlo realizations using simulated 
data with the theoretically predicted CDF of P' obtained by numerical integration of (3.5). 
The results show good agreement between the theoretical prediction and the empirically 
generated values. The mean value of P, 15.957, obtained via Monte-Carlo compares well 
with the theoretically predicted value of 16. Figure 5.3 plots the type-I error versus 
threshold for M=64. Here different values of K are chosen to illustrate the threshold 
behavior. For each value of a, A is determined from a numerical inversion of (4.1). For 
a given a we observe an increase in A with increasing K. Examples that illustrate the 
two goodness-of-fit test approaches are presented. For a given training data set, a moving 
window approach is used to form realizations of P'. This approach is sub-optimal because 
it does not guarantee statistical independence of the realizations of P'. However, we adopt 
this approach due to the limited training data support. For the examples presented in 
Figures 5.4 and 5.5, data from the MCARM program [19] corresponding to 16 pulses and 
8 channels from acquisition '220' on Flight 5, cycle V is used. 

Figure 5.4 shows the results of the goodness of fit test for the based on the PDF of 
P'. The normalized GIP and the threshold are plotted as a function of range. Non- 
homogeneity of the training data is evident in those bins for which the normalized GIP 
exceeds the threshold.Figure 5.5 plots the normalized GIP as a function of range. The 
normalized GIP theoretical mean is obtained from (3.7) with a simple normalization. 
Values of the normalized GIP, which exceed the theoretical mean correspond to non- 
homogeneous training data realizations. Observe that this method is more sensitive to 
the presence of discrete scatterers in the training data. 



PDF of P' for Several Values of K 

Figure 5.1: PDF of the normalized GIP 
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Type-I Error Versus Threshold 
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Chapter 6 

Performance Analysis of the AMF 
Test 

The adaptive matched filter test is given by 

_ |s"lfrx|' "- 
A-AMF -  „ -     ,    < *AMF- (V-L) 

where Rd = ^ Et^=ixixf> witn x,, z = 1,2,..., if denoting independent indentically 
distributed target-free training data vectors. 

The expressions for Pja and Pd for the AMF operating in homogeneous Gaussian clutter 
are given by [14-16] 

Pfa-AMF =  /' Ml\ ^7 (6.2) 
Jo \l + qammaÄAMFr 

d-AMF = '-A- [1 + gamma\AMF]L 

x £ ( i ) ^m (63) 
1   ' L 

m=l  \ 

where 

x[l - gammainc I , m )]/r(7)d7 
\1 + 7'MMF      7 

1 

[1 + x"R^x/tf] 

is the well known loss-factor with PDF [20] 

1 

(6.4) 

^^(L^^/V-l)^1-^2 ^ 

where L = K—JN+1, A is related to the output signal-to-noise-ratio and gammainc(p, m) 
is defined as 

gammainc{p,m) = ——- / 9m~lexp(-e)d9. (6.6) 
1 {m)Jo 

14 



For K ->■ oo, Rd -» Rd with probability 1. Thus, the expressions for AMF Pfa and Pd 

approach those of the matched filter, given by 

P/a = exp(-XMF) fQ y\ 

Pd = exp{-B) ££L0 irt
1 _ gammainc(\MF, k)] 

Figure 6.1 presents Pd versus output signal-to-interference plus noise ratio (SINR). Rel- 
evant test parameters are reported in the plot. The matched filter (MF) curve obtained 
from (6.7) corresponds to the optimal performance in Gaussian clutter. The Pd curve for 
the AMF operating in homogeneous Gaussian clutter follows from (6.3) and exhibits per- 
formance to within 3 dB of the MF. The AMF performance operating in non-homogeneous 
training data with and without NHD pre-processing is carried out by Monte Carlo sim- 
ulation at AFRL. For this example, the training data contained thirty high-amplitude, 
mainbeam discrete targets located at various range cells and Doppler frequencies. Initial 
sample support for NHD pre-processing is 6M. A sliding window approach is used to 
select a subset consisting of 4M training data realizations. Each GIP value obtained at 
a specific range cell is computed using Rformed from 2M adjacent training data vectors. 
Previously, we noted the sub-optimality of this scheme. In practice, its use is dictated by 
training data size limitations. In this manner 4M GIP values are obtained. The NHD 
pre-processing used in this example is based on a comparison of the empirical GIP with 
its theoretical mean value given by (3.7). The training data used in forming Rafter NHD 
processing is obtained by sorting the GIP values and retaining K = 2M realizations corre- 
sponding to the smallest GIP deviation from the theoretical mean of (3.7). Observe that 
the AMF performance in non-homogenous clutter degrades severely. Also note that NHD 
pre-processing restores the AMF performance to its analytical value. Figure 6.2 shows a 
plot of the GIP versus range prior to NHD pre-processing for the simulated data used in 
carrying out the performance analysis of Figure 6.1. Figure 6.3 shows a plot of the sorted 
absolute value of the difference between the GIP and its theoretical mean versus range 
after NHD pre-processing for the example in Figure 6.1. Observe the absence of discretes 
in the first K = 2M range cells. Figure 6.4 depicts performance using measured data 
from the MCARM program [19]. For this case, it is not possible to present performance in 
terms of detection probability versus SINR. This is due to the fact that only one realization 
of target present data is available. Hence, we present a plot of the detection test statistic 
versus range. Since the AMF test statistic is an ad-hoc estimate of the output SINR, 
and since the probability of detection is a monotonically increasing function of the output 
SINR, this is an acceptable performance metric. Performance of the AMF without NHD 
processing degrades significantly in non-homogeneous clutter. Performance improvement 
is noted when the AMF is employed in. non-homogeneous data with NHD pre-processing. 
Consequently, the use of NHD affords moderate performance improvement of the AMF 
test in non-homogeneous clutter. The performance with measured data is characterized 
by the ratio of the test statistic at the test cell to the mean of the test statistics formed 
from adjacent cells,*L, and the ratio of the test statistic at the test cell to the highest 
test statistic formed from adjacent cells,\J>2, respectively. Table 1 shows these values for 
the AMF test with and without NHD pre-processing. 
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Algorithm #i (dB) #2 (dB) 
AMF with NHD 13.25 5.68 
AMF without NHD 11.83 3.38 

Table 6.1: AMF Performance with MCARM Data 
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Chapter 7 

Conclusion 

This report has made several significant contributions. First, we provided a statistical 
characterization of the GIP based NHD developed in [1-4,8]. We showed that the underly- 
ing GIP statistics deviate significantly when the unknown covariance matrix is estimated 
using finite sample support. We derived a canonical representation for the GIP in terms 
of two statistically independent random variables and showed that the normalized GIP 
follows a central-F distribution. These facts were then used to construct goodness-of-fit 
tests, whose performance is presented using both simulated and measured data. Applica- 
tion of this of this method as a pre-processing method for training data selection in the 
adaptive matched filter algorithm (AMF) was presented. Performance on the AMF in 
contaminated training data degrades significantly. The use of our pre-processing method 
for training data selection restores the AMF performance to within 3 dB of the opti- 
mal matched filter (MF) performance. This fact is illustrated with simulated as well as 
measured data from the MCARM program. 
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Appendix A: GIP PDF for Known 
Covariance Matrix 

In this appendix, we show that for known R, the GIP given by Q = xR *x follows a 
Chi-Squared distribution with M complex degrees of freedom and is given by (2.5). 

We begin by noting that w = R~5x is simply a linear transformation of a complex- 
Gaussian random vector. Consequently, w is also a complex-Gaussian random vector. It 
follows that 

£?(w) = R-i£(x) = 0 (A]) 

%w") = R-5£(xxH)R-i=I. {-> 

Thus, 
M 

Q = xR-1x=||w||2 = ^|iyi|
2 (A.2) 

where W{, i = 1,2,... ,K are independent identically distributed CN(0,1) random vari- 
ables.The PDF of Wi is given by 

fWl{wi) = -exp{-\Wl\
2). (A.3) 

7T 

Let Ri = \Wi\ = y/{W% + Wl) and Q{ = tan'1^), where Wci and Wsi denote the in 
phase and quadrature components of Wt. The Jacobian of the tranformation is given by 
J = jj-. The joint PDF of Ri and d{ is given by 

1 r 
fRxßx{

ri,0i) = T-rJwM) = -exp(-r2). (A.4) 
\J\ n 

Noting that 
fn&M) = fMfeM (A.5) 

where 
/«.(n) = 2riexp{-r2

i)    rt > 0 ,      . 
/*(*<) = i    0 < Ö,- < 27T. [A-b) 

Therefore,Äj and #, are statistically independent random variables. The characteristic 
function of Ri is given by 

**»(«;) = E[exp(-juR2)) = 7—^. (A.7) 
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Recognizing that Q = *Rrlx = ||w||2 = E& W = E&Ä?, it follows that the 
characteristic function of Q can be expressed as 

1 
*Q(w) = E[exp(-juQ)] = n **?(<") = {1+juJ)M- (A-8) 

Taking the inverse Fourier Transform of (A.8) yields the PDF of Q, which is given by 

nM-\ /Q(9)=W"PH) q-0' (A'9) 
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Appendix B: Stochastic 
Representation for the Normalized 
GIP 

Let Z denote a data matrix whose columns are the previously defined z*, i= 1,2, ...,K. 

The maximum likelihood estimate of the covariance matrix is then expressed as R = —S2, 

where Sz = ZZ  . Consequently, the normalized GIP is expressed as 

P'=xaS~1x. (B.l) 

The data matrix Z and the vector x admit a statistical representation of the form 

z = p'Y <B2> X = K2y 

where Y is a data matrix whose columns, y*, i = 1,2,...,K are iid CN(0,I) random 
vectors and y is a CN(0,I) random vector, which is statistically independent of Y. Hence, 
the normalized GIP is expressed as 

y'Vy (B.3) 

H 

unu 
where Sy = YYff. Next, we use a Householder transformation defined bv A = 1-2—r^-. 

where u = y - ||y||e and e = [100...0]r, so that y = Ay = ||y||e. Also, let Y = AY 
Since A = AH and AAH = A"A = I, it follows that the statistics of Y are identical to 
that of Y. Conseqently, the normalized GIP is expressed as 

P =yHSj9 (B.4) 

where S^ = YY". Furthermore, we partition Y as 

Y y? (B.5) 
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where yf is the the first row of Y and Yft denotes the (M - 1) x K matrix formed from 
the remaining rows of Y. Consequently, Sy is expressed as 

Sy    — 
yfyi  yfYxl 

Yjfo   Y*Yn 
(B.6) 

The inverse of S5 admits a representation of the form 

S_1 
gll     S12 

S21     S22 
(B.7) 

Finally, the normalized GIP is expressed as 

P = ||y||2Su. (B.8) 

However, from the matrix inversion Lemma it follows that S11 = [yf PxYi]" > where 
px = [I - YuCY^Yn)-1^]. Since YH^YH)"

1
^ is a projection matrix of rank 

M-l, it follows that P± is a projection matrix of rank K-M+l. Consequently, yfP±yi = 

S   |yi(0l2- Therefore, S11 is simply the reciprocal of a chi-squared distributed random 

variable with K-M + l complex degrees of freedom. Also, ||y||2 is simply the sum of 
the squared magnitudes of M iid CN(0,1) random variables and hence follows a chi- 
squared distribution with M complex degrees of freedom. Consequently, the GIP admits 
a representation of the form of (3.2). 
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Statistical Analysis of the Non-homogeneity Detector for STAP Applications 
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Abstract — We present a statistical analysis of the recently proposed non-homogeneity detector (NHD) 
for Gaussian interference statistics. We show that a formal goodness-of-fit test can be constructed by 
accounting for the statistics of the generalized inner product (GH>) used as the NHD test statistic. 
Specifically, the Normalized-GIP is shown to follow a central-F distribution and admits a canonical 
representation in terms of two statistically independent Chi-squared distributed random variables. 
Moments of the GIP can be readily calculated as a result. These facts are used to derive the goodness-of- 
fit tests, which facilitate intelligent training data selection. Additionally, we address the issue of space- 
time adaptive processing (STAP) algorithm performance using the NHD as a pre-processing step for 
training data selection. Performance results are reported using simulated as well as measured data. 

I. INTRODUCTION 

An important issue in space-time adaptive processing (STAP) for radar target detection is the formation 
and inversion of the covariance matrix underlying the clutter and interference. Typically, the unknown 
interference covariance matrix is estimated from a set of independent identically distributed (iid) target- 
free training data that is representative of the interference statistics in a cell under test. Frequently, the 
training data is subject to contamination by discrete scatterers or interfering targets. In either event, the 
training data becomes non-homogeneous. Consequently, it is not representative of the interference in the 
test cell. Estimates of the covariance matrix from non-homogeneous training data result in severely 
under-nulled clutter. Consequently, CFAR and detection performance suffer. Significant performance 
improvement can be achieved by employing pre-processing to select representative training data. 

The problem of target detection using improved training strategies has been considered m [1-8]. The 
impact of non-homogeneity on STAP performance is considered in [9-11]. It was shown in [12] that the 
distribution information of a class of multivariate probability density functions (PDF) is succinctly 
determined through an equivalent univariate PDF of a quadratic form. An application of this result is the 
non-homogeneity detector (NHD) based on the generalized inner product (GEP) [ 1 -4,8]. 

Non-homogeneity of the training data arises due to a number of factors such as contaminating targets, 
presence of strong discretes, and non-stationary reflectivity properties of the scattering surface. In these 
scenarios, the test cell disturbance covariance matrix, RT, differs significantly from the estimated 
covariance matrix, R formed using target-free disturbance realizations from adjacent reference cells [13]. 
If a large number of test celf data realizations are available, the underlying non-homogeneity is 
characterized via the eigenvalues of R 'RT [14]. However, in radar applications, only a single realization 
of test cell data is usually available. Consequently, the resulting estimate of RT is singular. Hence, [1-4,8] 
compared the empirically formed GIP with a theoretical mean corresponding to a 'known' covariance 
matrix. Large deviations of the GIP mean from the theoretical mean have been ascribed to non- 
homogeneity of the training data. Such an approach provides meaningful results in the limit of large 
training data size.   In practice, the amount of training jdata available for a given application is limited by 
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